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Abstract. Isotropic diffusion processes on cosef$(M + N)/U(M) x U(N) and
UM,N)/U(M) x U(N) and their zero-curvature limit are studied from a unified viewpoint.
As indicated in our previous works the projection of the Fokker—Planck equation onto the
maximal commutative subgroup of these cosets can be described by using the radial part of the
Laplace—Beltrami operator. By taking the zero-curvature limit, an integral which is a natural
extension of the Itzykson—Zuber integral to the rectangular matrices is explicitly evaluated. The
probability density function obtained from the diffusion &M, N)/U (M) x U(N) is studied

in detail, which can be applied to the quantum transport problem. The explicit expressions
for the probability density function in the metallic and insulating regimes are obtained. For
the metallic regime the integral representation for the hypergeometric function is used and the
results are exact. Furthermore, by using the orthogonal polynomial metpoiht correlation
functions are obtained exactly for arbitrary

1. Introduction

Non-Hermitian random matrices have been applied to many areas in physics. For example
they play a crucial role in the study of disordered systems, such as one-dimensional quantum
transport [1-3]. Related to the subject, non-Hermitian regular random matrices are studied
in [4—6]. Recently, rectangular random matrices have also attracted the attention of theorists
in several fields [7,8]. As far as the authors know, rectangular random matrices are not
well investigated compared with the regular ones.

In this article we study a stochastic process on the cdsété+ N)/U (M) x U(N) and
UM,N)/UM) x U(N), whereU(M) x U(N) denotes the direct product of the unitary
groupsU (M) and U (N). These cosets are classified as Riemannian symmetric spaces of
type A Ill [9]. Our model is constructed so that in the zero-curvature limit the process
reduces to the usual Brownian motion id2/-dimensional Euclidian space, &f x M
complex matrices. The coset spaces with non-zero curvature seem somewhat difficult to
deal with. We may, however, get along with these non-zero curvature spaces to obtain the
Fokker—Planck equations projected onto the maximal commutative subgroup of the cosets.
Consequently, it is clarified that we can use the technique developed in the study of the
Riemannian symmetric space. The diffusion equations thus obtained can be mapped to
imaginary-time Sclisdinger equations and analysed exactly.

t E-mail address: akuzawa@monet.phys.s.u-tokyo.ac.jp

0305-4470/98/071713+20$19.5@C) 1998 IOP Publishing Ltd 1713



1714 T Akuzawa and M Wadati

The zero-curvature limit is worth an independent investigation. In [10], the integral

/ du (U) explB tr(M1U MoU ] (1.1)
U(N)

M1, My € u(N) 1.2)
w : normalized two-sided invariant Haar measurelogV)

is evaluated by introducing the isotropic diffusion process of Hermitian matrices. Here, tr
stands for the trace of matrix arjdneans the Hermitian conjugate. We refer to the integral
(1.1) as the ltzykson—Zuber integral. Besides its significance in the mathematical context,
the Itzykson—Zuber integral has many important applications in physics. For example, an
application to quantum chaotic systems is studied in [11]. It is also fully used in the lattice
gauge theory [12]. We might think of extensions of the Itzykson—Zuber integral. We can
evaluate the ltzykson—Zuber-type integral by taking the zero-curvature limit of the diffusion
on the symmetric spaces of type A Ill. Evaluated from our model is an integral

/ d,uM(U)/ d,uN(V)exp<}Retr(VYUXT))
U U t

X,Y : N x M complex matrices

(1.3)

which can be realized as an extension of the Itzykson—Zuber integral to rectangular matrices.
Further analyses are possible also for the curvatured versions. Since we are motivated
by the extended random matrix theory which can be applied to the one-dimensional quantum
transport we choose the diffusion on the non-compact ver&igi, N)/U (M) x (N) as
a starting point of our analysis. By using the integral representation of the hypergeometric
function it is possible to express the projection of the probability density function to the
maximal commutative subgroup for the diffusion in an exact form for the metallic regime.
Through a standard procedure we can also obtain the explicit form of the probability density
function in the insulating regime. We shall see that they have, in common, an interaction
term among the coordinatés;} of the maximal commutative subgroup,

[ [ = x) sinha(x; — x;) (1.4)

ij

which does not differ from the well-investigated ca9é, = N. This implies that the
properties of our model are completely the same as in theMaseN if we use the Dyson-
gas approach. We can, however, integrate the probability density function for arbitrary
numbers of points and obtain tlkepoint correlation function by the method of orthogonal
polynomial.

This paper is organized as follows. Section 2 deals with the isotropic diffusion on
UM~+N)/UM)xU(N). The isotropic diffusion o/ (M, N)/U (M) x U (N) in section 3
is the non-compact version of section 2. An almost parallel argument is possible and
therefore we do not write details of calculations. In section 4 we consider the zero-curvature
limit and show that the Itzykson—Zuber-type integral is evaluated in the sequel. At the
beginning of section 5 we briefly illustrate how the diffusion @M, N)/U (M) x U(N)
is related to the quantum transport. In the rest of the section we analyse the probability
density projected to the maximal commutative subgroup for this diffusion process. Section 6
is a summary of this article which also contains some discussions. Throughout the article,
we assumeV > N.
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2. DiffusiononU(M + N)/U(M) x U(N)

Let & and 8 denote respectively the Lie algebras of a Lie grammand its subgrougk.
We callJj = & — R the standard complementary space of the p@irkK) [13]. The time
evolution of a matrix &® is determined by

eRE.N W)  gW(r+dr) (2_1)

W(t), R(dt,t) € J (2.2)
where~ means an equivalence relation,

a~pBe=alfek fora,feG. (2.3)

So, if we would analyse the model with a usual manipulation of matrices, it is necessary to
determineB such that

eR(dz,z)eW(t)eB(dz,z) — eW(H—dz) (2.4)

W), R(dt, 1) € 3 B(dt, 1) € A. (2.5)
For the stochastic proces#,, R and B are random matrices. In this section we deal with the
Brownian motion, or a time-dependent random matrix on a dd$#&f+N)/U (M) x U (N).

We setG = U(M+N) andK = U(M) x U(N). The rank of the cosdf (M +N)/U (M) x
U(N) is min(M, N). SinceW, R € J, they are parametrized by usiig x M matricesX

and Q as
(0 xt
W_Ia<X 0> (2.6)
. (0 of
R—Ia<Q O) (2.7)
wherea is a real constant and plays the role of a scaling parameter. We assume that
JJT()(Qij(df, 1) Q5 (de, 1)) /dt = 8,18 (2.8)
dIimO [all other moments of the elements Of]/dt = 0 (2.9)
r—

where the bracket§) stand for the ensemble averaging. Tié + N) x (M + N) matrix
W can be decomposed as follows:

vv:m(%T 8)(0 %T><g \9T> (2.10)

x1 O 0 0
0 x» ... 0 ... 0

B o (2.11)
0 0 ... xy ... 0

where T means the transposition. Expression (2.10) indicates that the eigenvali@és of
consist of N pure-imaginary complex conjugate pajtsiax;|1 < i < N} andM — N zeros.

Let A(G/K) denote regular functions o6/K. As has been indicated in [14], the
Fokker—Planck equation of the stochastic process described above can be mapped to a
differential equation

3
E\IJ = a?divgrad¥ = 4LV U e A(G/K) (2.12)

where L is the so-called Laplace—Beltrami operator GriK. In the conventional random
matrix theories the ensemble of whole matrix elements is projected onto the ensemble of
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eigenvalues. For the cos€t/K where G is compact this procedure can be generalized
to the projection onto a maximal torus subgrofipf G. We express the action @ on
A(G/K) from the left- and right-hand sides respectively by

gV and v.g (g €®, Ve AG/K)). (2.13)
We set
AK\G/K)={V € A(G/K)|k -V =W k € R}. (2.14)

Namely, A(K\G/K) is the space of functions iAd(G/K) invariant under the action of

K from the left-hand side. There is an isomorphism betwaék \G/K) and A(T) with

the identification of elements which can be transformed to each other by its Weyl group.
The restriction of (2.12) oM (K\G/K) introduces the radial part of the Laplace—Beltrami
operator(’ ,

%f =a’L f f e A(K\G/K) (2.15)
1 IR 3

556 () ZZ PP aiCo (2.16)

£.(x) = [ [ sinatxi — xj) sina(x; + x;) ]_[ sinY2(2ax;) sif™ =" (ax;). (2.17)

i<j

The correspondence between the differential equation (2.15) and the diffusion process is
seen as follows. The Fokker—Planck equation{fo} is mapped to (2.15) by relating the
probability density functionP ({x;}, #) to f({x;}, 1),

P{x;}, 1) = (E+ ()2 f (i}, 1). (2.18)
Equation (2.15) can also be transformed into an imaginary-timed8uiger equation for
V=681

d

_ _lp - H+1p (2.19)
_ (M N)2 2 1 a? 1
___Z ZSinza)c,- _Ezsin‘?Zax,-

2
_%(31\42 £ N2_1). (2.20)

Since the HamiltonianH, does not contain interaction terms between ‘particles’, the
eigenfunction can be written as a product of eigenfunctions for the one-particle Hamiltonians,

2 2.2 2 2
= _%% + & _2N) : sinzlaxi B %sinZlZaxi - GEMP N D), (2.21)
Let us determine the eigenfunctiofisof the equation
R (x) = EV(x)). (2.22)
We define a functiom by
N4 (xi) = sin/?(2ax;) sinf® =" (ax;). (2.23)
In terms of f = n7*v, (2.22) is transformed again to
Ly if("") = (E+0)f(x) (2.24)

24 ()2 dy;
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where
2
‘= %(N+1)(3M—N—2). (2.25)
By changing the variable
z = 3(1 - coq2ax;)) = sirf(ax;) (2.26)
(2.24) is rewritten into Jacobi’s differential equation,
&7 df E+¢ .
ALy Nty N+ L EE o 27
dz? dz 2a?

For the Jacobi's differential equation, readers can refer to [15] for instance. TFhiss,
expressed by the hypergeometric function as

fxi)=F(=v,M —N+1+v, M — N + 1; sirf(ax;)) (2.28)
wherev is related toE by

E+¢é=2a°v(M — N+ 1+v) (2.29)
or

E = 24° <v+M_TN+1>2— a—62(M—N+1). (2.30)

Equation (2.28) is the unique rational solution of equation (2.27) and we discard the other
solution (which contains logarithmic functions). Where N,
F(—v,M — N+1+v,M — N + 1; sirfax;)
r HI'M —N+1
_ Fo+ DI + )PV(M*N*O)(COS x;) (2.31)
'M—N+v+1)
is a polynomial of degree with respect toz which is known as Jacobi’s polynomials.
Indeed,v € N must be satisfied by the requirement théty;) does not diverge for
x; € (0, 27 /a). The solution of (2.22) is
U(xi) =i (x)F(=v, M — N + 1+ v, 1; sir(ax;)). (2.32)
It must also be noted that the solution in terms of the hypergeometric functions is no
more than a formal one. The infinite series (2.28) does not necessarily converge. So the
expression
fxi) =sitY Mgy )F(1+v, N — M — v, 1; coS(ax;)) (2.33)

which is obtained by the analytic continuation and convergescfor R might be more
appropriate.

3. Diffusion onU (M, N)/U (M) x U(N)

For the non-compact, or the negative curvatured versiom, N)/U (M) x U(N) of the
symmetric space almost parallel argument as in the previous section is possible. Remember
thatU(p, ¢) is the group of matriceg in GL(p + ¢, C) which fulfil

glp,qu =1, (3.1)

Iy = (}}” fq) : 3.2)

with
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In the above, 1 means the: x n unit matrix. Parametrizations d¥ and R are now

W:a(g ?g) (3.3)

R=a(g %T) (3.4)

instead of (2.6) and (2.7). Here, is a real constant. Again, we can map a differential
equation

d
Ef =a’L" f f e A(K\G/K) (3.5)
1 oh D , 0
==& —& — 3.6
L= 556 (x) ; PR i (3.6)
£ (x) = [ [ sinha(x; — xj) sinha(x; + x;) | | sinh/?(2ax;) sind* =" (ax;) (3.7)
i<j i
to an imaginary-time Scbdinger equation
ad
— o= H oy (3.8)
1 92 (M — N)?a? 1 a? 1
H =--) —+ -y —
2 axf 2 Z sint? ax; 2 Z sinkf 2ax;
2
+%(3M2 F N2 1), (3.9)
The one-particle Scbhdinger equation
hi ¥ () = EY(x) (3.10)

has solutions

V(xi)=n_(x)F(—v, M — N+ 1+4v, M — N + 1; —sintf(ax;))  (3.11)
where

n—(x;) = sinh’?(2ax;) sinHM=N (ax;) (3.12)
andv and E are related by

E—¢&=-2a°v(M — N +1+v). (3.13)

Eigenfunctions of (3.8) are written as products of one-particle eigenfunctions. We want to
have a system of real wave functions which approach the plain waves for Aarg&n
appropriate parametrization foris

1 i
v=—5M=N+1)+ 5k ke R. (3.14)
Then E is expressed as a function bfby
2k2 2
E=c(k= “7+%(3M2+N2—1). (3.15)

Let us determine the orthonormal basis. Weset M — N + 1 and
w—ik pu+ik )
’ /JLy Z .

(3.16)

Fk(Z):F< 5 o
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Introducing the normalization constant(k) we denote a normalized one-particle
wavefunction by

Yi(x) = C(k)n_(x) Fi(— sintf (ax)). (3.17)
C (k) is determined by the relation
0
C(k)C(k')(—l)”/ dz 2 M Fi(2) Fu(2) = 8k — k') + 8(k + k). (3.18)

Noting thatF; is a solution of the differential equation,

d d wr+k?
- _ _ _ - = oM —
[dzz Q-2 dz] Fy 7 ¢ F,=0 (3.19)
it follows that
2 _ 12 40
K-k / dz Z* Y F () Fr(z) = [z“(l —-2) (Fk % — F dﬂ)} . (3.20)
4 oo dz dz /| o
By using the transformation formula
I'(o)T F'e)I'(B — 1
MF(O[, B.y;z) = M(—z)_O’F (oe, a—y+lLa—-—8+1 —)
I'(y) Iy —a) z
M(—z)*ﬂF (ﬁ, B—y+1B8—a+1; }> (3.21)
Iy —a) z

we get the asymptotic form fgz| — oo,
wooikopo ik I'(w)I(ik) (—ptik)/2
F(2—2,2+2,,u,z)—>2Re|:FM2(—z) . (3.22)
(=)
Combining the above results, we obtain
AT (1)?
— K 2

o [ _TRrr) i
xRe|:I(k — k" ([F(M+"<)F(u+lk’)]g) (—2) (k+k')/2

. I(—ik)T(ik") o
—i(k + Kk —7)i k+’<>/2]. 3.23
e )<[r(“2"‘)r(“*"‘ )]2)( ) 523

It is easy to prove the orthogonality from (3.23). Let us integrate (3.23) with respéct to
from zero to+oo;

00 0
/ dk / dz 2" Fu(2) Fe(2) = 4(—D*T ()% lim
0 —00 ==

0 1 L (ik)[ (k") L NitkeH)/2
X[/_wd"k+k/<[r(”*"‘>r<“+"‘ )]2>( K

© 1 [ D(=ikI(=iK) .y
N dk _ itk 2 | 394
/foo k+k/([r(/l, |k)F(M2|k/)]2>( Z) ] ( )

The integrants of the first and second integrals on the right-hand side of (3.24) do not
have poles respectively in the lower-half plane and the upper-half plane. Thus, it can be
integrated out;

Iim

/ de 2 TR F @) = (D"

C(—ik"H (k")
[l—-(u |k’)r(u+|k’)]2

= 87 (—1)"I"(w)? (3.25)
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This determines the normalizatia@n(k). That is, (3.18) is satisfied by setting
NG NG )

Ck) = -
© Ver Tl (k)]

(3.26)

4. Zero-curvature limit and the Itzykson—Zuber integral for rectangular matrices

Leaving considerations about the time-evolution of diffusion processes to later we focus
in this section on the limit — 0. Whether we start fronl/ (M + N)/U (M) x U(N)

in section 2 orU(M, N)/U(M) x U(N) in section 3 does not matter. The results are
completely the same. The Hamiltonian for the imaginary-time &tinger equation reduces

to

H=>"h, (4.1)
where

L 192 M-N?-11

T 42)
This limit corresponds to the stochastic procesgvok M matrices,

dX () = 0, dr) (4.3)

lim (Qij(dr, 1) O (dr, 1)) /dr = 813 (4.4)

dIimO [all other moments of the elements Of] /dr = 0. (4.5)

f—

That is, the procedure — 0 means the zero-curvature limit. We defigeby
_ 1
go) = [Je2 -]+ (4.6)
ij i
which is essentially thet — O limit of (2.17). The eigenfunction of the one-particle
Hamiltonianh’, which does not diverge at = 0 is written in terms of the Bessel function,
Vi = (kx)Y2 Ty (kx) keR 4.7

upto the normalization constant. The corresponding eigenvalké/& The one-particle
(imaginary-time) Green function for the Hamiltoniaf) is given by

xY/2y1/2 X242 Xy
Ly ) = exp( — Lyn (22 4.8
go(x, y; 1) ; p( o >MN<t) (4.8)

wherely;_y(x) is the modified Bessel function. Let us denotedy(x, y; r) the probability
density function which satisfies

d

EGO(X’ yit) = LoGo(x, y; 1) (4.9)
o = lima?] = Lo 2 S Lo (4.10)
o_a~>0a +_20x izlaxl'ox a)Ci .

and the initial condition
N

1
Go(x, y;0) = =+ 3

) PEO’N i=

8(xi — yr,) (4.11)
1
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whereoy is the symmetric group of degreé, i.e. the summation is over all the permutations
of {1,2,..., N}. From (4.8) we can show that

B 1 xRy xZ+ y? Xkl
Go(x, y; t) = %’O(y) m ll_[ 7 exp(—T> {del{[M,N (T) ]k’[ . (412)

Since we are dealing with the standam 2 -dimensional Brownian motion (See (4.3), (4.4)
and (4.5)), the probability density functiafio(x, y, r) has another expression:

N M

fl_[dxi Go(x, y; 1) = (Zm)fMN/H dRe(Xij)d|m(Xij)/dMM (U/)/dMN (V")
i i=1j=1
X exp(—z—lt tr(X — VWU (X — V’\yU’)T)
=@ [ s tow? [ du@)de™ @)

1
x /du"’ VHdu™ (V) exp(—z—t tr(VEU — V'WU')(VEU — v’xm/)*)

2 2
= C@rn) ™M / e so<x)2exp(—u>

2t
- 1
x/duM (U)/d,uN (V)exp<7Re tmkuah) (4.13)
whereW is anN x M matrix whose elements are
vy O ... 0 ... 0
0 0O ... 0
W= . (4.14)
0O 0 ... yv» ... O

The normalization constartf accompanies the change of variable of integration:

N M _
ct / [ 1] ]dreXipdim (xi) = f [ Tdvi fo)? / du (U) / du™ (V) (4.15)

i=1j=1
X=VEU (4.16)
and will be fixed later. We express y” the normalized Haar measure of
UM)/Zx(T) (4.17)
where
Zx(T)=UM — N) x (U@Q)N (4.18)

is realized as the centralizer @fin K. In the last expression of (4.13) we can replace an
integral

/ TR (%) (4.19)
U(M)/Zg(T)

by an integral ovelU (M),

/ duM (U). (4.20)
U (M)
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By comparing (4.12) with (4.13) we find that the Itzykson—Zuber intergral for rectangular
matrices is given by

/du (U)/du (V)exp( Re tntVYU E )>

_(@m)MN MN-N 1de1UM NG
~ CNl H( ) g

The constaniC is determined as follows. We set éxptr(XX')/2) as the integrand of
(4.15). The left-hand-side is readily integrated and we obtain an equality,

oo N 2
2m)MNCt = /W ]1 dx; £o(x)? exp( — Z %) (4.22)

The right-hand side of (4.22) is evaluated by using the Selberg’s integral [16] to be

_ N / ]_[dyz o= eXp( Z%>

i<j i

= QNN NN =D =N /0 [T [0r =2 exp( > ,-)

l<_[

(4.21)

NG 1—[ re+ ])F(IIl:I(Z)N +1+))

=2N<M—1>H(1+j)!(M—N+j)!. (4.23)
j=0

Thus, the complete form of the ltzykson—Zuber integral for rectangular matrices is
determined:

2N(M71)
/du (U)/du (V)exp( Re t(VWU B )) TtMN*N
sdet Iy ()
1 )M — N ! iVi)? ! ~. 4.24
XL[)( + H +7) U(xy) R (4.24)

5. Physical applications

5.1. Quantum transport; symmetries of transfer matrices

We consider an ensemble of transfer matrices which relate incoming and outgoing fluxes on
both sides of a quasi-one-dimensional disordered mesoscopic system (figure 1). We assume
that there areM right-moving channels and/ left-moving channels on both sides of the
system. not We write anth state of right- (left-) moving channel in regioh as|n, A, )

(In, A_)). We decompose the wavefunctions in the regions | and Il as

M N
Wi(x, o) =Y alln:ly) + > biin: 1) (5.1)
n=1 n=1
and

Wy (x, 07)_Za|“|n ) +Zb“||n ). (5.2)
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L — |
—_— —_—

—_—

—
— cap4 —
I —
capl cap2 cap3

Figure 1. A quasi-one-dimensional mesoscopic system. Region Il is disorderd while regions |
and Ill do not contain disorders.

The stategn : 1) and|n : Ill L) are vectors with normalized moments;
] —idn i ly) =1
(n g : In:ly) (5.3)
(Ml —idefn L) = £1

We denote bya, anday,, respectively, thel/-component vectora andajj, (1 < n < M).
In the same way, andb;, are understood as th€-component vectors. Then the transfer
matrix R is an(M + N) x (M + N) matrix defined by

(5n)==(5) 69
a-() e-(i) e

We impose the flux conservation constraint ®nin terms of

o, = (134 _2N> (5.6)
this constraint is represented as

Clo.C = C}0.Cu1. (5.7)
This relation is equivalent to

o, =Rlo,R (5.8)

which means only [9] that the transfer mat®kbelongs toU (M, N),
ReU(M,N). (5.9)

In the caseM = N, a classification by the following three universality classes is useful
[17];

e f = 1: invariant under time-reversal (integer spin);

e B = 2: no time-reversal invariance;

e B = 4: invariant under time-reversal (half-odd spin).

We assume, however, thaf == N. This is not an unnatural assumption. Whign£ N
there cannot exist time-reversal symmetry. One of the examples of this situation is the chiral
Luttinger liquid which appears as the edge state of the fractional quantum Hall system. So
we shall concentrate on the cage= 2. Let us consider the change of the transfer matrix
due to an infinitesimal increase of the length ¢of the region II. Since the region Il is
disorderd, it is natural to consider that the transfer matrix is multiplied by an infinitesimal
random matrix which belongs t&' (M, N). We do not know about the bases used for the
decomposition of the wavefunction for the regions | and . Therefore, we identify two
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transfer matrices which can be transformed to each other by the unitary rotations of the
basis,

an —> uay (u e UM))
by — vby (v € U(N)).

Then the isotropic diffusion of the transfer matrix is described by the model discussed in
section 3.

(5.10)

5.2. Time evolution fot/ (M, N)/U (M) x U(N)

Let us further discuss the diffusion. We chodgéM, N)/U (M) x U(N) as an example.
The probability density function projected to for the maximal commutative subgroup is
expressed in almost the same way as (4.12),

£-(x) 1
N 2 v 11
G(x,y;1) £ )N det{g(xi, s D} (6.11)
Hereg(x;, y;; t) is the one-particle Green function defined by
G355 = [ dk expl-e i e i) (5.12)
From (5.11) and (5.12), we have

() 1
& (y) N!

N
= [ (sint x; —sinhzxj)[l_[/ dki]
i=1

i<i

XE['L(%) ( l) exp[—e( l)t] ( 2 ) T: n; —Sin (axl)>]

det(F (455, 155 s — sinkP(ay))i
X
[T, (sintf y; — sint? y;)
whereu = M — N + 1. We focus on the limit;; — O for all i. If we note that
— |k, Ik, . > " 2n)? k2 —Sinf'F )"
F(M m+ ,u;—smrF(ay,-)> =1+ZH”=1[(“+ )"+ ( (ayi))
m=1

N
G(x.yi1) = [1’[ / ok, exp[—e(km]&k(xi)] det{n, ()},
i=1

(5.13)

2 2 22 (W) m m!
(5.14)
we can readily show that
detf F(&k vtk sinkf(ay))); i .
[ lim } i 2 T @)}, = constantx detk”/ "}, ;. (5.15)
Lm0 [T;-;(sink? y; — sint? y;)

Thus, from (5.13) and (5.15), we obtain

N
G(x.,0; 1) = constantx | [(sinf x; — sink?xj)[l_[ nz(x,»)}
i=1

i<j

x det{ / dk; k297 C (k;)? expl—e (k:)1]

— ik; ik; .
xF(M > M—; L —Slnhz(ax,-))}

ij

(5.16)
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5.3. Metallic regime

5.3.1. evenM — N. WhenM — N is a non-negative even integer, (5.16) is rewritten as
(see (A.6))

N 2
G(x,0;0) =¢q H(sink?xi - sinhzxj)[l_[ n%(xi)] exp[—%N(SM2 4+ N2 _ 1)t}

i<j i=1

- A L 2tk2
« det{ / dkik?~Mtanhk; /2) [ k2 + (20 — D?? exp[—a ;k’ }
0 n=1

— ik; ik; .
XF<M > i —; L — Slnhz(ax,-))} (5.17)
ij

where¢; is a constant and. = (M — N)/2. For brevity we define functiond;(j =
1,2,...,N) by

o0 L 2,12
Aj(x) =/ dk k% Manhrk/2) [ JIK% + (22 — D)) exp[_“ ;" }
o —

n=1

—ik ik
xF <M ! , ptl TS —Sinhz(axi))

2 2
> 2j—-1 1 L 2 212
= dk kv ——— | |k 2n—1

/,oo 2 coshirrk/2) nljl[ o )’]
°tk? —ik ik

x exp et +nk/2|F ek , pt! . ; —sintf(ax;) | . (5.18)
2 2 2

The integral representation for the hypergeometric function
r 1
F(a,B,y;2) = __I'n__ P11 —s)r P11 —s2)%ds  (5.19)

Ly =BTB) Jo
is useful here; by setting

bix,s) = In [w] (5.20)
1-—5
we have
s : 2L—1 L
F (,u Ik, adns lk, w; — Sinhz(ax)) = ﬂ coshink/2) I_I[k2 +@2n -1
2 2 ol
l .
X / ds[s(1 — $)]*? 11 + s sintf ax) /2 exp[@} . (5.21)
0

Use of (5.21) in (5.18) yields

22L721- 1 o) )
Aj(x) = J/ ds[s(l—s)]“/2_1(1+sSinhzaxi)_“/z/ dk k21
T 0 —00

L
< [ 1€ + @1 — 1) exp
n=1

(5.22)

[—aztkz +ikb(x;, s) + nk]
5 )
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Another useful formula is

o —a?tk? + ikb(x; k
/ . exp[ a‘tk® + ikb(x;, s) + 7 } = 2 /i (2a2) "M
—00

2
1 . 2 b — |7T
X exp[—@(b(x,-, §) —lm) :| H,, <ﬁ> (5.23)
where H,,(x) is the Hermite polynomial. Substituting
L L
[+ @ =17 = q.k™ (5.24)
n=0 n=1

and (5.23) into (5.22), we obtain

22710 () & o ! b—in
Ai(x) =i ———— L (—2a —<J+")/ ds Ho i) ( 1— )21
j) =i NG ;:061 ( 1) R AW e [s(1—s)]

x (1 + s sintf ax;)"?b(x;, 5)2a°t exp[—%(b(xi, s) — iﬂ)2:| . (5.25)

Let us consider the metallic regime whereg N. In this case the dominant contribution
comes from leading-order terms with respect té;

2L —1 1 s 2(j+L)-1
Aj(x) ~ i%(—zﬁ)(ﬁ“/o ds (lj/%) [s(1—s)]/21

x (1 + s sint? ax;)*?b(x;, 5)2a°t exp[—%(b(xi, 5) — in)z} . (5.26)

We may evaluate the integral

1
f ds (b(xi, s) —im) [s(L — )]*? 1A + s sintf ax;) */?b(x;, s)2a°t
0

1 .
X exp [—@(b(x,-, s) — m)z} (5.27)
by using the method of steepest descent. The exponential term of (5.27) has a saddle point
ats = 1+ cothax;, where & = —e*. We can deform the contour continuously to that

which goes through this saddle point. Consequently,

1
/ ds (b(x;, s) —im) [s(1 — )]*? 1A + s sintf ax;) /2 exp[—iz(b(xi, s) — in)2:|
0 8a’t

. . . 1 2atw coshax;
~ i(2ax;)'i"*(sinhax;) " ?(coshax;) e exp[——x?} oAt EOSTY
2t x;€2%i sink? ax;

. . 1
= constantx a'*2 /x;x! " sinh 1 ax; sinh /2 2ax; exp[—z—txiz} . (5.28)

Now (5.17) is expressed as

N 1
G(x, 0; t) = constantx a"™+2) ]_[(sinhzxi — sink? x;) (x? — sz) l_[x,M N+2n_(xi)
i<j i=1

N 2
X exp[—z—txiz - %N(SMZ + N2 - 1);] : (5.29)

WhenM — N = 0 (5.29) reproduces the results in [3].
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5.3.2. OddM — N. For a positive odd — N, we setu = M — N +1 = 2L'. Then
(5.16) is rewritten as (A.6)

N

G(x, 0: 1) = constantx l_l(sinh2 x; — sinkf x;) [H nz(xi):|

i<j i=1
2

X exp[—%N(BMz + N?% - 1):} det{ A (x)};.; (5.30)

whereA} (x;) is defined by
L a’tk?

Al(x;) = /O dk; k7 ~3coth(rrk; /2) H[k? +4(n — 1)2]2exp[—7]

< F /Jv_|ki, ik
2 2
The integral representation for the hypergeometric function in (5.31) is

— ik ik
F(M W+

TS —Sinhz(ax,-)) . (5.31)

2L/ -1 L
ﬂk sinh(rk/2) [ [k + 40 — 1?7~

n=1

ikb(x, s)
2

> % TR —Sinhz(ax)) =

1
X / ds[s(1 — ]2 11 + s sintf ax) /2 exp[ (5.32)
0
where the functiorb(x, s) is defined in (5.20). From (5.31) and (5.32), we have

21/ —2 1 0
A;- (x;) = —2 Fw / ds [s(1 — $)]*?7 11 + s sinkP ax;) /2 / dk k20D
T 0 —00

(5.33)

L, 2 2 .

—a?tk? + ikb(x;, s) + 1k

x]‘[[k2+4(n—1)2]exp[ a Z(X )+ }
n=1

The asymptotic behaviour of;. in the metallic regime is determined in the same way as in
section 5.3.1;

22L1T () (Y (b—in \2UTED
ajo ~ i L0 ottt [Fa () s s
! VT 0 v 2a%t
. 1 .
X(L+ s sintf ax) /b, 5)2a% exp[—@@(xh ) - m)z} - (634
Using (5.28) we arrive at the conclusion that (5.29) is also valid wifen N is a positive

odd integer. Thus, the Green function in the metallic regime for arbitdnand N is
obtained. Note that this result is exact in the limi> 0.

5.4. Insulating regime

In the larger limit, the dominant contribution to the probability density function comes

from the rangex; > 1. In this range we can use the asymptotic form (3.22),

w—ik p+ik
2 7 2

f dk k29D C (k)2 exp[—e(k)t] F < L — Sinhz(axi))

2
~ a 2 2
~ —47TF(M)2 eXp|:——6 N@M* + N — 1)t]
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oo [(kziky2 ] 2,12
xRe / e 2ty k20D (sinhax;) 4 0/2 exp| — & k
o T(—ik) 2

O G U O @\ an? 4 N2 Xi
~ ZaIﬁF(M)Z Sintf (@x,) exp[—EN(3M + N© — 1)ti| xin(j_l) (ﬁ) .
(5.35)

Inserting (5.35) in (5.16) we obtain

N
G(x, 0; t) = constantx l—I(Sinh2 x; — sink? x;) (x? — x?) l—[xi sinh”=V=1(x,) sinh(2ax;)
i=1

i<j

N 2
o] —heaf - N@MT 4N - . (5.36)

5.5. Orthogonal polynomial method

The aim of this section is the exact expression of thgoint correlation function,

N! 0 0 A
R,(z1,...,2.51) = m /_OO dz41--- f_oo dzy G(z; 1) (5.37)
where
Gz 1) = G(z,0; 1). (5.38)
This is achieved by the orthogonal polynomial method. [16, 18]. Let us set
7 = —sinkP ax; (1<i<N). (5.39)

Taking the Jacobian of the transformation into account the probability density (5.16) is
rewritten in terms of{z;} as

G(z. 1) = constantx [ J(z —z;) [ [z~ det

i<j i

x{/dk,» kf(f‘%(ki)zexp[—e(ki)t]F<“_Z'k",%']‘i,u;z,->}
ij

= constantx Hzf”’N det P9 (z))},, det

. ik ik
x{/dki kiz(’_l)C(ki)zexp[—e(th]F(M 2"‘1, “J;' s z,-)} . (5.40)
i,j

Following [18] we set
0 )

Ay (1) = / dz MNP N0 () / dk k20D C (k)2 expl—e (k)1]
—00 O

—ik p+ik
XF<M2 7M2 ,u;z>. (5.41)

We rewrite (3.23) as
4T (pn)?
kZ _ k/2
. L k) (k") .
k—k i - _)ik+k)/2
X['( )<[F(&2"‘>r(#>]2>( X

0
/ dz 2 () PMTVO () = (—1y
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_ [ (—ik)T(ik") e
_ k k/ i 2 _ i( k+k)/2

et )<[F<"T'k>r<#>]2>( ?

. I'(—ik)'(=ik") Y
_ k _ k/ i _ _ i(k+k')/2

A )<[F(“;2'k>r<%>]2>( K

. [ (ik)T(—ik) o ]°

k+k . _ —z) kK W} 5.42
ik + )<[r(&2"‘)r(%)]2>( 2) N (5.42)
and choos&’ = —i(2n + M — N — 1). Thena,,,(t) is evaluated as follows

[
k+ k'

(1) = A=D1 T ()2 / dk k20D € (k)2 expl—e (k)1]

X[( C(ik)[ (k") >(_Z)i(k+k’)/2
[T(

EOT(50P

_< C(—ik)T(—ik") >(_Z)i(k+k’>/2]o

NN

1 o0
= Z(_l)ﬂf dk k2"=V expl—e (k)]

[
k+ k'

—ik\? I'(ik") (k1) /2
r - —
X[( < 2 )r<—ik)[r<%”">]2>( ?

_<F<M+ik>2 -F(—iki)_k, >(_Z)—i(k+k’)/2:|0
2 /) T(p[r(55))2 —o

= 2(=1)* (=K V exp[—e(—k')1]

(n—1)
= 2(—1)“_1[ —{2m -1 + M}Z] expl—e(i{20m — 1) + uhi]. (5.43)

The last equality follows from the contour integral. Next, we substitdt&? in the last
expression of (5.41) by

(5.44)

N 2 2
—kc—Q21L-1D+w
Lo= 11 G prmr—ei-vrwe
1=1azj) s ®
This manipulation is justified becausé’~? appears in the determinant in (5.40), i.e. the

the determinant does not change under this substitution besides a normalization constant.
Note that

Li([20n — 1) + ) = 8 (5.45)
for 1 < j,m < N. We see from (5.43) and (5.45) that

0 o0 s .
f dzzM*NPnﬁ”fl‘N’O)(z)/ dkL,l(k)C(k)Zexp[—e(k)t]F(M Z'k,“;'k,u;z>
—00 0

= 8m2(—1)* Lexp[—e(—k')t] (5.46)
for 1 <m,n < N. Now let us set

N 0
K20 =271 =0 Y VR M @)s / dk Ly (K)C (k)2
m=1 0

a?{k? + (2m — 1) + M)Z}t:| . (u —ik p+ik

— 07 ). A7
xexp[ 5 > g JMZ) (5.47)
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From (5.46) we obtain the relations

0
/ dzK(z,z) =N (5.48)
OOO
/ de' K(z,2s DK (2" 1) = K(z,2"5 1) (5.49)
and
A 1
G(z,t) = m det[K(Z,', Zj; t)]i.j' (550)

The probability density function (5.50) is readily integrated over arbitrary numbers of points
by using relations (5.48) and (5.49). This is the well known procedure in random matrix
theory [16]. Consequently, we obtain thepoint correlation function exactly;

Ry(z1,...,2n05t) = det[K (zi, Zjs t)]i.,j:l,Z,...,n' (551)

6. Summary and discussions

In this paper we have studied a diffusion process on cdséi$ + N)/U (M) x U(N) and

UM, N)/U(M) x U(N) and their zero-curvature limit from a unified view point. In the
zero-curvature limit we obtain a formula for an extension of the Itzykson—Zuber integral to
rectangular matrices. By its correpsonding restricted root system we can classify the integral
(1.3) for M # N as BC-type, whereas (1.1) id-type. The integral in [19] is obtained by
settingM = N in (1.3) and classified aS-type. This kind of extension is rather familiar in

the study of integrable particle systems. It is fair to mention that the integral formula (4.24)
has already been reported by Jackstl [20]. There we find some mistakes concerning
the decomposition of the symmetric space, which do not affect the final results. Let us add
a comment on integral (1.3). In [8] Feinberg and Zee studied a rectangular matrix model.
Using the technique of Hermitian reduction, they showed some interesting properties of
rectangular random matrices. Among them is a modified partition function: fov any

matrix X,

ZA_/HJI_[ Re(dX;;)Im (dX;;) ex0(—vMN t[X X" + X X7 A]) 6.

A : N x N Hermitian matrix

This partition function can be analysed by the usual Itzykson—Zuber integral (1.1). While
(6.1) and (1.1) are convenient from the view point of Hermitian reduction, a partition
function

Zp = /]_[ ]_[ Re(dX;;)Im (dX;,) exo(—v/MN t[X X' + X B]) 62)
i=1j= .
B : M x Nmatrix

is also introduced naturally in consideration of tB€-type symmetry of the model. In
order to analyse (6.2) the integral (1.3) must be used in place of (1.1). Thus, it is clear that
the results in this paper should be useful for the random matrix theory with (6.2), or the
probability density function,

Zi exp(—vMN tr[X X' + X B]). (6.3)
B
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We might think of several possible applications of the diffusions studied in sections 2 and 3.
First, the diffusion discussed in section 3 is applicable to quantum transport phenomena.
Taking this purpose into consideration we have investigated in more detail the isotropic
diffusion onU (M, N)/U(M) x U(N) in section 5. We have obtained the explicit form

of the probability density function for the metallic and insulating regimes. The probability
density function for the metallic regime is obtained via the integral representation of the
hypergeometric function and is valid for arbitrary value{ef}. We have also obtained the
n-point correlation functionk,, exactly by using the method of orthogonal polynomials.

Appendix A. Normalization

For the discussions in section 5 the expression (3.26) for the normalizationis not
convenient. Let us suppose first that= M — N + 1 is an odd integer and introduce a
positive integerL. by M — N = 2L. Then using the double angle formula for Gamma
functions,

VAT (2x) = 227 P () (x + 3) (A.1)
and the known fact for Gamma functions at pure imaginary numbers,
T 1/2
Cik)| =|——— keR A2
Iranl [ksinhnk] € (A-2)

the absolute value df (5 + ‘5") is expressed as

r “+ik =|r L+ik+1
2 2] 2 2

L r@ik) . L B
=2t /m —r(%)zik (ik+D(ik+3)---(ik+2L — 1)
2L /x Lo, 5 vz
. A 2n —1 . A.
cost2(rrk/2) |:£[l{k +( )7} (A.3)
From (A.2) and (A.3), we obtain
w = 21 2L 27k tanh(rk /2)]Y/2 ]L[[k2 + (2n — 17 (A.4)
I'(ik) 17 ' '

Whenp is an even integer we spt= 2L’. It is easy to compute the absolute value of
L0

w+ik U 2r vz L 2 211/2
r SR Rl [ — K2+ 40n — 1 . A5
< 2 >‘ [ksinhnk/Z Bl[ 40— 7] (A-5)
It follows that
G+ iik)z —2L/+3/2_1/2 ~1/2 z 2 2
—in =2 72k tanh(rk/2)] 2 [ [[k? + 4 — D?). (A.6)
n=1

Using (A.4) and (A.6) in (3.26) we obtain explicit expressions €tk), which give (5.17)
and (5.30).
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